Computations of the Lyapunov exponents from time series
نویسندگان
چکیده
In this article, we consider chaotic behavior happened in nonsmooth dynamical systems. To quantify such a behavior, a computation of Lyapunov exponents for chaotic orbits of a given nonsmooth dynamical system is focused. The Lyapunov exponent is a very important concept in chaotic theory, because this quantity measures the sensitive dependence on initial conditions in dynamical systems. Therefore, Lyapunov exponents can decide whether an orbit is chaos or not. To measure the sensitive dependence on initial conditions for nonsmooth dynamical systems, the calculation of Lyapunov exponent plays a key role, but in a theoretical point of view or based on the definition of Lyapunov exponents, Lyapunov exponents of nonsmooth orbit could not be calculated easily, because the Jacobian derivative at some point in the orbit may not exists. We use an algorithmic calculation method for computing Lyapunov exponents using time series for a two dimensional piecewise smooth dynamic system.
منابع مشابه
Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملA practical method for calculating largest Lyapunov exponents from small data sets
Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the largest Lyapunov exponent. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. We present a new method for calculating the largest Lyapunov exponent from an experimental time series. The method ...
متن کاملEstimating Lyapunov Exponents in Chaotic Time Series with Locally Weighted Regression
Nonlinear dynamical systems often exhibit chaos, which is characterized by sensitive dependence on initial values or more precisely by a positive Lyapunov exponent. Recognizing and quantifying chaos in time series represents an important step toward understanding the nature of random behavior and revealing the extent to which short-term forecasts may be improved. We will focus on the statistica...
متن کاملUnscented Transformation for Estimating the Lyapunov Exponents of Chaotic Time Series Corrupted by Random Noise
Many systems in the natural world exhibit chaos or non-linear behavior, the complexity of which is so great that they appear to be random. Identification of chaos in experimental data is essential for characterizing the system and for analyzing the predictability of the data under analysis. The Lyapunov exponents provide a quantitative measure of the sensitivity to initial conditions and are th...
متن کاملInability of Lyapunov exponents to predict epileptic seizures.
It has been claimed that Lyapunov exponents computed from electroencephalogram or electrocorticogram (ECoG) time series are useful for early prediction of epileptic seizures. We show, by utilizing a paradigmatic chaotic system, that there are two major obstacles that can fundamentally hinder the predictive power of Lyapunov exponents computed from time series: finite-time statistical fluctuatio...
متن کامل